
GCX User’s Manual

Radu Corlan

Version 0.5.6 March 25, 2004

Contents

1 Introduction 3
1.1 Features . 3
1.2 Free Software . 5
1.3 Contributing . 5
1.4 About this Manual . 6
1.5 Related Projects . 6

2 A Tutorial 7
2.1 Building and Running gcx . 7
2.2 Starting with gcx . 8
2.3 Navigating the Image . 9
2.4 Examining the FITS Header 9
2.5 Stars . 10

2.5.1 Detecting Stars . 10
2.5.2 Catalog Stars . 11

2.6 World Coordinate System . 11
2.7 Photometry . 12
2.8 Configuration Options . 13
2.9 Going Further . 13

3 Image Files 14

4 CCD Reductions 14

5 Stars 14

6 Catalogs 14

7 The World Coordinate System 14

8 Aperture Photometry 14
8.1 Prerequisites . 14
8.2 Reduction Steps . 15
8.3 Noise and Error Modelling . 16

8.3.1 CCD Noise Sources . 17
8.3.2 Noise of a Pixel Value 19
8.3.3 Dark Frame Subtraction 20
8.3.4 Flat Fielding . 21
8.3.5 Instrumental Magnitude Errors 22

8.4 Fitting the Solution . 23
8.5 Reporting . 24

9 Camera Control 25

10 Telescope Control 25

11 Observation Scripts 25

12 Command Line Options and Batch Processing 25

2

1 Introduction

The previous version of gcx , cx was written to control the newly designed
cpx3m ccd camera. Once the basic camera control functions were running, it
was easy to add some LX200 control functions, so that the telescope could
be pointed at various objects without having to switch applications.

Having telescope control and image acquisition integrated into one pro-
gram makes the following step obvious: after entering goto/get commands
over several cold nights, one wants to automate the process—especially if he
observes a large number of fields every night (as when doing variable star
work).

The fact that the author’s telescope doesn’t point precisely doesn’t help
automation. So the ability to check/correct the pointing becomes essential.
cx first got the ability to read star information from the GSC and overlay
it on the images; that eases visual checks (one doesn’t need maps anymore)
but still is one step short of full automation.

Finally, when reliable field matching was implemented in gcx , it became
possible to make the program fully automatic. In the current version, gcx
can run through a list of observations completely unattended, and only stops
if clouds roll in.

As it happens, field matching and image processing are also essential
steps for CCD photometry. gcx implements recipy files: local catalogs of
field and standard stars that are used to automatically reduce variable star
frames.

1.1 Features

gcx can do the following:

Image handling

• Open 16-bit FITS image files;

gcx uses floating-point images internally, so other FITS formats are
easy to add;

• Zoom/Pan images, adjust brightness/contrast/gamma in an intuitive
way, appropiate for astronomical images;

• Convert FITS files to 8-bit PNM after intensity mapping;

• Show image statistics (both global and local);

3

• Maintain a noise model for the image across transformations;

• Maintain bad pixel information;

• Perform ccd reductions (dark/bias/flat);

• Automatically align and stack images.

Catalogs and WCS

• Read field star information from GSC1/2 and Tycho2;

• Read object information from edb files;

• Read recipy files;

• Detect sources (stars) from images;

• Overlay objects on the image;

• Match image WCS to GSC or recipy field stars;

• Calculate world coordinated for image objects.

Camera Control

• Control cameras over a TCP socket using a simple protocol;

The control proces (cpxcntrl) presently supports the cpx3m camera.
It can be easily modified to support other cameras.

• Acquire images under script control;

• Set binning/windowing/integration times/temperature;

• Dark frames;

• All acquired frames are fully annotated in their FITS headers;

• Auto-generate descriptive names for files.

Telescope control

• Support LX200 protocol over serial;

• Point telescope under script control;

• Point telescope by object name (if edb catalogs are installed);

• Refine pointing by comparing image with GSC;

4

Aperture Photometry

• Do sparse field stellar photometry using circular apertures for stars,
annular apertures for sky estimation;

• Aperture sizes fully programmable;

• Multiple sky estimation methods;

• Uses a complex error model thorughout, that takes into account pho-
ton shot noise, read noise, noise of the callibration frames and scintil-
lation;

• Report noise estimates for every result;

• Take photometric targets (program and standard stars) from recipy
files, or directly from the image;

• Produce a comprehensive report.

Interfacing

• Uses plain-ascii files for configuration files, reports and recipies;

• Most functions available in batch mode, so the program can be made
part of a script.

1.2 Free Software

Gcx is free software, distributed under the GNU General Public License.
Users can modify it to add features, reduction algoritms, support for other
cameras/telescopes. It is written in C. The GUI uses the Gtk+ 1.2 toolkit.
Some GNU-specific libc functions are used, but nothing fancy. It should
compile and run on any system that has GNU tools, glibc and Gtk+ 1.2.

1.3 Contributing

The most important contribution you can make to gcx is to try it out, and
don’t give up immediately if something goes wrong. Complain to the author
about it—he will try to help you.

The next important contribution one can make is to extend the hardware
support of the program. When interface library are available for cameras
(many manufacturers do have such libraries), it is relatively straightforward

5

to add support for a camera, as gcx has cleanly defined camera interface.
Likewise, many mount/telescope manufacturers use the LX200 protocol, so
essentially what is needed for other telescopes/mounts is tetsing and maybe a
little tweaking. The program only uses a few LX200 functions, so interfacing
to even a custom mount should be easy.

Third, there’s the bane of free software: documentation. Any help in
documenting or checking the documentation of the program is greatly ap-
preciated, and will go a long way towards keeping gcx users happy.

And finally, the fun part: the code itself. There are many clever algo-
rithms that can be added to the program, and which will benefit from the
general infrastructure and integration provided by gcx .

1.4 About this Manual

This manual is work in progress. It starts with a tutorial introduction, so
people can get a taste of what gcx is all about. The focus in that section
is on operations that don’t involve particular hardware (image viewing and
data reduction).

What gets written next depends on feedback from users. Some aspects
of the program’s operation are self-explanatory, while some may be a little
quircky. Ask for information, and it shall be provided.

The manual is maintained in LATEX

1.5 Related Projects

cpxctrl the camera server used by gcx . Currently it supports the cpx3m
camera, but should be easy to modify to control different ones;

cpx3m a free CCD camera design;

avsomat a batch variable star reduction program; more portable than gcx
it shares some code, but uses a different field-matching algorithm.
Avsomat and gcx use the same recipy format.

xephem The well known planetarium program by Elwood Downey. gcx uses
the same object databse format as xephem, namely (.edb), as well as
the same WCS annotation FITS fields. The star search algorithm is
also inspired from xephem.

libnova A library for celestial mechanics and astronomical calculations;
gcx uses some sidereal time and equatorial-to-horizontal coordinates
transformation routines from libnova.

6

2 A Tutorial

This section is a tour of gcx’s features that don’t require any data files other
than the ones provided with the distribution, or any special hardware. It
should best be read while playing with the program.

The tutorial will go step-by-step using menu commands; this requires
a fair amount of clicking. While helpful for starters and to see the basic
steps, it’s not a very efficient way to run gcx . Most commands have
keyboard shortcuts (they are displayed in the menu next to each command).
Most everything can be accomplished with a few keystrokes, or a cleverly
contructed command line.

2.1 Building and Running gcx

If you’re lucky (meaning that you have an i386 GNU/Linux system with
compatible libc and gtk+-1.2 is installed on your system), the precompiled
binary supplied with the distribution will just work. To test, cd to the
toplevel distribution directory (gcx-x.x.x) and run:

src/gcx

If all goes well, you should get an empty window with a menu. Type ctrl-
Q or File/Quit to exit the program. It is recomended that the program is
installed in /usr/local/bin for example.

If the above doesn’t work (or even if it does), you have to recompile
the program. Make sure gtk+-1.2 is installed on the system (if you have
Gnome, you also have gtk), then in the toplevel directory type:

./configure ; make

Configure takes some options. See the INSTALL file supplied with the
distribution for more details. Also check the README file for the latest
information.

If the above step completes successfully, become root and do a

make install

This will place the program in /usr/local/bin, and may also install data files
in future versions.

The installation is now complete.

7

2.2 Starting with gcx

The data subdirectory of the distribution contains an example fits frame
(uori-v-001.fits.gz), and an example recipy file for the frame (uori.rcp).
These will be used throughout this section.

First, start the program:

gcx

If the program wasn’t installed in /usr/local/bin or similar, you may have
to type the full path to the binary; from the distribution toplevel directory
type:

src/gcx

You should be presented with a empty window, with a menu at the top.
To load the example frame, type ctrl-O or use File/Open Fits; select

the example fits file (uori-v-001.fits.gz) in the data directory an click
ok. The program will load and display the frame.

Alternatively, the fits file name can be supplied on the command line.
Something like:

gcx data/uori-v-001.fits.gz

will star the program and load the frame at the same time.
Two status bars are displayed at the bottom of the window. The left

one shows the current display parameters: the zoom level, the low cut and
the high cut. The low cut corresponds to black on the monitor, while the
high cut corresponds to 100% white. The values are expressed in the same
units the FITS file is.

The right-side status bar shows the various status and error messages.
When loading an image, global statistics for the image are displayed. This
will be referred to as the “status bar” throughout this manual.

gcx prints a lot of information on the terminal from which it was
launched. This is mostly debugging information, which will probably be
supressed in future versions; it can generally be ignored, but sometimes
interesting information shows up.

On most errors, a beep is sounded and an error message is printed in
the status bar. Sometimes though, a command may appear to do nothing.
Checking the terminal will usually give a hint as to what happened.

8

2.3 Navigating the Image

To pan around the image, either use the scrollbars, or place the cursor over
the point that you want in the center of the image and press the spacebar
or the center mouse button. The image will pan only up to the point where
it’s edge is at the edge of the window.

You can pan back to the center of the image using ctrl-L or select
Image/Pan Center from the menu.

To zoom in, place the cursor over the point you want to zoom in around,
and press the = key (same key that has the ’+’ symbol). To zoom out,
press -. The Image menu also has Zoom In and Zoom Out options.

When loading a frame, the image cuts are automatically selected for
a convenient display of astronomical frames. The background is set at a
somewhat dark level, and the dynamic range is set to span 2 times the
standard deviation of the intensity across the frame. You can always return
to these cuts by pressing 0 or selecting Image/Auto Cuts.

Pressing 1 – 8 will select various predefined contrast levels. 1 is the most
contrasty: the image spans 4 sigmas, while 8 spans 90 sigmas. 9 will scale
the image so that the full input range is represented (the cuts are set to the
min/max values of the frame). Selecting Image/Set Contrast/... from the
menu will accomplish the same effect.

To vary the brightness of the background, use B (Image/Brighter) and
D (Image/Darker).

Another (sometimes more convenient) way of making contrast/brightness
adjustments is to drag (move the mouse while holding the left button pressed)
the pointer over the image. Dragging horisontally will change the brightness,
while dragging vertically will adjust the contrast.

The key presses mentioned above are displayed in the menu alongside
the respective options. F1 or Help/Show Bindings will show on-line help
about mouse actions.

It is important to know that all the ajustments described only apply to
the display. The internal representation of the frame (and of course the disc
file) is never changed in any way.

2.4 Examining the FITS Header

Select File/Fits Header from the menu. A new window will display the
optional FITS header fields from the loaded frame.

9

2.5 Stars

gcx maintains a list of objects it can overlay on the display and run various
processing steps on. They are called stars or sources. The stars can be
extracted from the image, or loaded from catalogs or recipy files.

2.5.1 Detecting Stars

Ctrl-click on a star image. A round circle will appear around it (you cannot
mark very faint or saturated stars). You don’t need to click precisely on the
peak - the program will search around, find a star and create an object (a
user star) positioned at the centroid of the star image.

Click inside the circle. Information about the star will be displayed in
the status bar: the start type (field star), the pixel coordinates (counting
from the top-left corner), and the world coordinates if possible. Since the
frame we loaded contained WCS information, but it couldn’t be verified
by the program, the status bar will show world coordinates, but will mark
them as “uncertain” and disable all operations that depend on these objects’
WCS. More on validating the WCS below.

Right clicking on a star will pop up a specific menu. As our WCS isn’t
validated yet, only the ’delete’ option is active at this point.

Now press S or select Stars/Detect Sources. The program will search the
whole frame, and mark stars. There is a limit as to how many stars will be
marked. The limit can be changed by selecting File/Edit Options, clicking
on the “+” next to Star Detection and Search Options and increasing the
number in the Maximum Number of Detected Stars field.

There is also a limit on how faint the detected stars can be. Decreasing
the value in the SNR for Star Detection field will make the program look
for fainter stars. Note that a very low value of SNR will increase the run
time of the detection routine considerably. Don’t go below 1.0 or so.

To remove the detected stars from the display, use Stars/Remove De-
tected Stars or press shift-S.

Automatically detected stars and manually marked (user) stars are dis-
played with different symbols and deleted with separate commands, but
otherwise equivalent. The program considers automatically detected stars
somewhat expendable, but tries not to remove user stars unless specifically
requested.

10

2.5.2 Catalog Stars

A second class of stars handled by gcx are catalog stars. They can be
loaded from the GSC if it’s installed on the system, or from recipy files.

Installing the GSC will be described later in this manual. For the mo-
ment, we will load the example recipy file from the data directory of the
distribution.

Select Photometry/Load Recipy from the menu, then select the example
recipy file in the data directory (uori.rcp) and click ok.

Three types of stars will show up. Diamond-shaped ones are field stars.
They are used to fit and validate the WCS. Target-shaped symbols are the
standard stars. Their magnitudes are used to photometrically calibrate the
frame. Cross symbols are ’variable’ stars - stars that we want to measure,
but we don’t know their magnitude in advance.

To find out more about a star, right-click on a star symbol, and se-
lect Edit Star from the pop-up menu. This will open a dialog and display
information about the star, which can be edited. The designation, coordi-
nates and comments fields should be obvious. Two types of magnitudes are
shown: standard magnitudes are obtained from the catalog or recipy file;
instrumental magnitudes are measured by the program.

A magnitude entry looks like this: <band name>(<system>)/<error>.
The error field is optional. The band name is the name of the filter (’v’, ’b’,
etc). The system describes the source of the data. For instance, v(aavso)
means ’v’ magnitudes taken from aavso charts, while b(landolt) would be
used for ’b’ magnitudes of landolt standards. The program will not mix
magnitudes from different systems when reducing data.

Four flags can be present: The “standard” flag shows that a star can be
used as a standard in a photmetric reduction (so it’s standard magnitudes
come from an independent source). The “variable” flag shows that we want
the star measured—it’s standard magnitude will be replaced by a measured
one by the photometry run; “standard” and “variable” are mutually ex-
clusive. The “astrometric” flag shows that the star can be used for WCS
calibration. Finally, the “field star” flag tells that the program can delete
the star without asking the user.

2.6 World Coordinate System

Each time a frame is loaded, the program keeps track of the relation between
the the positions within the frame, and the ’true’ positions of the objects.
This relation is called the “WCS” inside the program.

11

If no information is known about the position of the field, the WCS is
called “invalid”. This can happen if the frame doesn’t have WCS information
in the header. When some information is available, we say the we have an
“initial WCS”. The program will treat wcs information from the header as
approximate. If we have an initial WCS and some field stars, we can match
the positions of the field stars with stars detected from the frame. If the
program finds a good-enough match, it will decide that the WCS can be
reliably used, and mark the WCS as ’valid’.

Our example frame already has an initial WCS. We have field stars
loaded from the recipy file (or we could have some from GSC). We will first
press S to detect starts from the frame. Select Wcs/Auto Pairs (or press
P). This will match the stars and create pairs, which are drawn with dotted
lines. Next, press W (or Wcs/Fit Wcs from Pairs), and the program will
fit the WCS so that the pairs overlap, and display the mean error of the fit
in the status bar. If enough pairs are fitted and the error is small enough,
the fit will be validated.

Pressing M or Wcs/Auto Wcs will do all the above steps in one operation
(detect stars, load field stars from GSC if possible, find pairs and fit the
WCS). Pressing shift-M or Wcs/Quiet Auto Wcs will do the same, but will
remove the detected stars and field stars after the fit. It will do nothing if
the WCS is already valid.

The fitting algorithm can be tuned by changing parameters under WCS
fitting options in the options dialog.

Once we have a valid WCS, we have new uses for the detected and user
stars. Clicking on them will print their true coordinates on the status bar.
It is also possible to mark them as variable stars, so they can be measured,
or as standard stars, so they can participate in the photometry solution (for
example when inputting data from a paper chart).

Choose a few detected stars, right click on them and choose Edit Star.
Now check the “variable” flag. The star will be transformed into a variable,
and its symbol changed to a cross.

2.7 Photometry

Now that we have our valid WCS and we know which stars we want to
measure and which standards to use, the actual photometry is easy: just
press shift-P or Photometry/Run.

A quick result for the first variable stars is printed in the status bar,
while a complete report is output on the terminal.

12

The reduction process has a number of parameters, which can be accessed
through the options dialog, under Aperture Photometry Defaults.

For more details about the photometry run check the Aperture Photom-
etry section below.

All the clicking in this section can be eliminated with one command.
From the toplevel directory, run:

src/gcx data/uori-v-001.fits.gz-P datauori.rcp

The program will load the frame, load the recipy, fit the WCS and run
the photometry. A report will be written to standard out (all debugging
messages are pronted to stderr, so redirecting stdout to a file will write just
the report to that file. For example,

src/gcx data/uori-v-001.fits.gz-P datauori.rcp>outf

will write the report to outf.

2.8 Configuration Options

gcx has a large number of configuration options. They can be accesses
through the options dialog, which can be brought up by pressing O or
File/Edit Options. Clicking on “save” in the options dialog will update
the default configuration file (.gcxrc), located in the home directory. Note
that option changes are not saved in the config file automatically.

When the program stars, it looks for the configuration file. If it cannot be
read, it will initialise all parameters with defaults. Next, if the -r option is
specified, it will read more options from the supplied file, so the parameters
can be changed for a specific run.

The configuration file can be changed through the options dialog, or it
can be edited directly.

2.9 Going Further

gcx has many more features and options than the ones described above.
To find out about them, read below (as the next sections become available),
browse the menus, or ask the author.

13

3 Image Files

4 CCD Reductions

5 Stars

6 Catalogs

7 The World Coordinate System

8 Aperture Photometry

8.1 Prerequisites

To measure stars, we need to know where the stars are located. We need
some standards to compare them with. And we need some way of estimating
the accuracy of our results.

In gcx all photometry targets are specified using their world coordinates
(right ascension, declination and epoch). While it is possible to trick the
program into just using stars from the image, this is not very useful. Looking
up maps and clicking on stars is a tedious and error-prone process. It’s also
very difficult to check the results.

The program has a powerful world coordinate fitting algorithm. It is
always prefferable to try to use it, than attempting to work without. See
the tutorial and the WCS section for more details.

During a photometry run, the following information is used:

• The position, orientation an scale of the field — an initial WCS in
gcx parlance. These vales only have to be known approximately; the
program reads this information from the FITS header.

• The exact catalog positions of several field stars distributed across the
field; these can be read from a recipy file or directly from the GSC.

• The positions and magnitudes of one or more standard stars. These
are normally read from a recipy file.

• The positions of the stars we want to measure (called variable stars).
These also come from the recipy file.

• Some parameters from which the noise can be estimated. They are:
the number of electrons per intensity unit, the read noise of the camera,

14

the noise of the dark frames used to calibrate, the noise of the flat field
used to calibrate, telescope aperture, integration time and airmass (for
estimating scintillation). These parameters are read from the FITS
header.

• The airmass. The program can calculate the airmass of the observation
if it knows the location of the observing site, the date/time of the
observation and of course the field coordinates) – which again come
from the FITS header. Of course, the time of the observation should
be recorded accurately in any case.

• A bad pixel map for the camera; it is used to flag situations where a
bad pixel falls on a star we want to measure.

Not all parameters are equally important. Some noise parameters may
be “guessed” by the program. Many parameters can be added to the fits
header after the observation is made, as they are fixed for a given observer
and equipment setup.

8.2 Reduction Steps

Once all the data is gathered, reduction proceeds as follows:

1. The WCS of the frame is fitted;

2. For each star we want to measure, the program calculated the pixel
position inside the frame and looks around that position for a peak
that looks like a star. If a peak is found within a certain distance, the
position is corrected to the centroid of that star image. This step can
be disabled.

3. The total flux within a circular aperture centered on the corrected
position is calculated. The size of the aperture can be set by the user.
If bad pixels are found within the aperture, the situation is flagged.
The noise associated to this value is calculated using the supplied noise
parameters.

4. A histogram is constructed from the values of pixels in an annular
aperture concentric with the first. The size of the annulus can be set
by the user. The sky backgound level is estimated from this area,
using one of the following methods: mean, median, mean with κ-σ
clipping, mean-median or synthetic mode. The noise associated to the
background is also estimated.

15

5. The background is substracted from the star flux, and the noise contri-
butions are added in quadrature. Scintillation noise (a multiplicative
factor) is estimated and added to the noise.

6. The resulting flux and noise is converted to the magnitude scale.

7. For standard stars the error from the input data is added to the noise.
From here on, we will use the term error. For standard stars without
error information, a default error is added, and the situation is flagged.

8. A robust fit algorithm is used to determine the transformation between
the instrumental and standard values.

The fit algorithm also calculates the expected error of the transforma-
tion coefficients and the mean error of unit weight, which indicates the
quality of the fit.

9. Finally, a report is generated. In many cases, finding an accurate solu-
tion is not possible just from analysing one frame. The report contains
enough information so that many observations can be reduced together
in a later step. However, collective reduction of many observations is
beyond the scope of this program.

8.3 Noise and Error Modelling

The issue of noise modelling is essential in any photometric endeavour. Mea-
surement values are next to meaningless if they aren’t acompanied by a
measure of ther uncertainty.

One can assume that the noise and error modelling only applies to deriv-
ing an error figure. This in true only in extremely simple cases. In general,
the noise estimates will also affect the actual values. For instance, suppose
that we use several standards to calibrate a field. From the noise estimate,
we know that one of the standards has a large probable error. Then, we
choose to exclude (or downweight) that value from the solution—this will
change the calibration, and directly affect the result (not just it’s noise es-
timate).

Precision and Accuracy. The precision of a measurement denotes the
degree to which different measurements of the same value will yield the same
result; it measures the repeatability of the measurement process. A precise
measurement has a small random error.

16

The accuracy of a measurement denotes the degree to which a measure-
ment result will represent the true value. The accuracy includes the random
error of the measurement, as well as the systematic error.

Random errors are in a way the worst kind. We have to accept them
and take into account, but they cannot be calculated out. We can try to use
better equipment, or more telescope time and reduce them. On the other
hand, since random errors are, well, random in nature (they don’t correlate
to anything), we can in principle reduce them to an aribitrarily low level by
averaging a lerge number of measurements.

Systematic errors on the other hand can usually be eliminated (or at
least reduced) by calibration. Systematic errors are not that different from
random errors. They differ fundamentally in the fact the they depend on
something. Of course, even random errors ultimately depend on something.
But that something changes incontrollably, and in a time frame that is short
compared to the measurement time scale.

A systematic error can turn into a random error if we have no control over
the thing that the error depends on, or we don’t have something to calibrate
against. We could treat this error as “random” and try to average many
measurements to reduce it, but we have to make sure that the something that
the error depends on has had a change to vary between the measurements
we average, or we won’t get very far.

Noise is the “randomest” source of random errors. We have no way to
calibrate out noise, but it’s features are well understood and relatively easy
to model. One doesn’t have a good excuse not to model noise reasonably
well.

We will generally talk about “noise” when estimating random errors
that derive from electrical noise sorce. Once these are combine with other
error sources (like for instance expected errors of he standards), we will use
the term “error”. Of course, there are two ways of understanding an error
value. If we know what the true value should be, we can talk about and
actual error. If we just consider what error level we can expect, we talk
about an estimated, or expected error.

8.3.1 CCD Noise Sources

There are several noise sources in a CCD sensor. We will see that in the
end they can usually be modeled with just two parameters, but we list the
main noise contributors for reference.

17

1. Photon shot noise is the noise associated with the random arrival of
photons at any detector. Shot noise exists because of the discrete
nature of light and electrical charge. The time between photon arrivals
is goverened by Poisson statistics. For a phase-insensitive detector,
such as a CCD,

σph =
√

Sph

where Sph is the signal expressed in electrons. Shot noise is sometimes
called “Poisson noise”.

2. Output amplifier noise originates in the output amplifier of the sensor.
It consists of two components: thermal (white) noise and flicker noise.
Thermal noise is independent of frequency and has a mild temperature
dependence (is proportional to the square root of the absolute tem-
perature). It fundamentally originates in the thermal movement of
atoms. Flicker noise (or 1/f noise) is strongly dependent on frequency.
It originates in the existance of long-lived states in the silicon crystal
(most notably “traps” at the silicon-oxide interface).

For a given readout configuration and speed, these noise sources con-
tribute a constant level, that is also independant of the signal level,
usually called the readout noise. The effect of read noise can be re-
duced by increasing the time in which the sensor is read out. There is
a limit to that, as flicker noise will begin to kick in. For some cameras,
one has the option of trading readout speed for a decrease in readout
noise.

3. Camera noise. Thermal and flicker noise are also generated in the
camera electronics. the noise level will be independent on the signal.
While the camera designer needs to make a distiction between the var-
ious noise sources, for a given camera, noise originating in the camera
and the ccd amplifier are indistinguishable.

4. Dark current noise. Even in the absence of light, electron-hole pairs are
generated inside the sensor. The rate of generation depends exponen-
tially on temperature (typically doubles every 6-7 degrees). The ther-
mally generated electrons cannot be separated from photo-generated
photons, and obey the same Poisson statistic, so

σdark =
√

Sdark

We can substract the average dark signal, but the shot noise associ-
ated with it remains. The level of the dark current noise depends on
temperature and integration time.

18

5. Clock noise. Fast changing clocks on the ccd can also generate spuri-
ous charge. This charge also has a shot noise component associated.
However, one cannot read the sensor without clocking it, so clock noise
cannot be discerned from readout noise. The clock noise is fairly con-
stant for a given camera and readout speed, and independent of the
signal level.

Examining the above list, we see that some noise sources are independent
of the signal level. They are: the output amplifier noise, camera noise and
clock noise. They can be combined in a single equivalent noise source. The
level of this source is called readout noise, and is a characteristic of the
camera. It can be expressed in electrons, or in the camera output units
(ADU).

The rest of the noise sources are all shot noise sources. The resulting
value will be:

σshot =
√

σ2
ph + σ2

dark

σshot =
√

Sph + Sdark =
√

S

S is the total signal from the sensor expressed in electrons. So to calculate
the shot noise component, we just need to know how many ADUs/electron
the camera produces. This is a constant value, or one of a few constant
values for cameras that have different gain settings. We will use A to denote
this value.

8.3.2 Noise of a Pixel Value

We will now try to model the level of noise in a pixel value. The result of
reading one pixel (excluding noise) is:

s = sb + A(Sd + Sp)

where sb is a fixed bias introduced by the camera electronics, Sd is the
number of dark electrons, and Sp is the number of photo-generated electrons
(which is the number of photons incident on the pixel multiplied by the
sensor’s quantum efficiency).

Now let’s calculate the noise associated with this value.

σ2 = σ2
r + A2(Sd + Sp) = σ2

r + A(s− sb)

Where σr is the readout noise expressed in ADU, and S is the total signal
expressed in electrons. Note that we cannot calculate the noise if we don’t

19

know the bias value. The bias can be determined by reading frames with zero
exposure time (bias frames). These will contribute some read noise though.
By averaging several bias frames, the noise contribution can be reduced.
Another approach is to take the average across a bias frame and use that
value for the noise calculation of all pixels. Except for very non-uniform
sensors this approach works well. gcx supports both ways.

Note that a bias frame will only contain readout noise. By calculating the
standard deviation of pixels across the difference between two bias frames
is
√

2 times the readout noise.

8.3.3 Dark Frame Subtraction

A common situation is when one substracts a dark frame, but doesn’t use
bias frames. The noise associated with the dark frame is:

σ2
d = σ2

r + A2Sd

The resulting pixel noise after dark frame substraction will be:

σ2
ds = 2σ2

r + A2(2Sd + Sp)

while the signal will be
sds = ASp

Using just the camera noise parameters, we cannot determine the noise
anymore. We have to keep track of the dark substraction and it’s noise
effects. We however rewrite the dark-substracted noise equation as follows:

σ2
ds =

(√
2σ2

r + 2A2Sd

)2

+ A2Sp

If we use the notation σ′
r =

√
2σ2

r + 2A2Sd, we get:

σ2
ds = σ′2

r + A2Sp

This is identical in form to the simple pixel noise equation, except that
the true camera readout noise is replaced by the equivalent read noise σ′

r.
What’s more, the bias is no longer an issue, as it doesn’t appeear in the
signal equation anymore. We can derive the pixel noise from the signal
directly, as:

σ2
ds = σ′2

r + Asds

The same parameters, σ′
r and A are sufficient to describe the noise in the

dark-substracted frame.

20

8.3.4 Flat Fielding

To flat-field a frame, we divide the dark-substracted pixel value sds by the
flat field value f . The noise of the flat field is σf . The resulting signal value
is

sff =
1
f

ASp

If we neglect second-order noise terms, the noise of the flat-fielded, dark
substracted pixel is:

σ2
ff = fσ′2

r + A2Sp +
(

σf

f
ASp

)2

σ2
ff = f2σ′2

r + Afsff + (σfsff)2

The problem with this result is that f is not constant across the frame.
So in general, the noise of a flat-fielded frame cannot be described by a
small number of parameters. In many cases though, f doesn’t vary too
much across the frame. We can then use it’s average value, f̃ for the noise
calculation. This is the approach taken by the program.

We can identify the previous noise parameters, σ′′
r = f̃σ′

r and A′ = Af̃ .
We have to introduce a new parameter, σf .

Without reducing generality, we can arrange for f̃ = 1. This means that
the average values on the frames don’t change with the flatfielding operation,
and is a common choice.

In this case, σr and A aren’t affected by the flatfielding operation, while
the third noise parameter becomes σf/f̃ , which is the reciprocal of the SNR
of the flat field.

gcx models the noise of each pixel in the frame by four parameters: σr,
A, σf/f̃ and s̃b. The noise function n(s) of each pixel is:

n2(s) = σ2 = σ2
r + A|(s− s̃b)|+

(
σf

f̃

)2

(s− s̃b)2

σr comes from the RDNOISE field in the frame header. A is the reciprocal
of the value of the ELADU field. σf/f̃ comes from FLNOISE, while s̃b comes
from DCBIAS.

Every time frames are processed (dark and bias substracted, flatfielded,
scaled etc), the noise parameters are updated.

21

8.3.5 Instrumental Magnitude Errors

Once we know the noise of each pixel, deriving the expected error of an
instrumental magnitude is straightforward. Let Nb be the number of pixels
in the sky annulus, and si the level of each pixel. The noise of the sky
estimate is: 1

σ2
b =

1
Nb

Nb∑
i=1

n2(si)

Now let Ns be the number of pixels in the central aperture. The noise
from these pixels is:

σ2
s =

Ns∑
i=1

n2(si)

The total noise after sky substraction will be:

σ2
n = σ2

s + Nsσ
2
b

.
The program keeps track and reports separately the photon shot noise,

the sky noise, the read noise contribution and the scintillation noise.
Scintillation is an atmospheric effect, which results in a random variation

of the received flux from a star. We use the following formula for scintillation
noise:

σsc = 0.09F
AM1.75

D2/3
√

2t

Where F is the total flux received from the star, AM is the airmass of
the observation, D is the telescope aperture in cm, and t is the integration
time. Scintillation varies widely over time, so the above is just an estimate.

Finally, we can calculate the expected error of the instrumental magin-
tude as

εi = 2.51188 log

(
1 +

√
σ2

n + σ2
sc

F

)
1This assumes that the method used for sky estimation has a statistical efficiency close

to the mean, which isn’t generally the case. Perhaps this should be taken into account,
at least for methods whose efficiency is well known, like the median.

22

8.4 Fitting the Solution

Having obtained instrumental magnitudes and error estimates for the stan-
dard stars, the program proceeds to finding a transformation between the
instrumental and standard system. If color information is not present, or
there aren’t enough standards of different color, only a zeropoint for the
transform is calculated. If the program decides there is enough information,
it will determine both a zeropoint and a color coefficient. 2

A robust fitting algorithm is implemented, which proceeds as follows:

1. First, the natural weights for each standard star are calculated as

Wi =
1

ε2i + ε2s

where εi is the estimated error of the instrumental magnitude, and εs

is the error of the standard magnitude (obtained from the recipy file).

2. The values are fitted using these weights. For the no-colors case, the
fit is simply a weighted mean; When color coefficients are fitted, linear
regression is used.

3. The residuals ρi for each star are calculated.

4. The weights are adjusted based on how much the residuals differ from
their expected values. The following function is used:

W ′
i = Wi

1 +

 ρi

α
√

ε2i + ε2s

β

−1

Th weighting function reduces the weight of values that have residuals
α times larger than expected to one half. Of course values with even
larger residuals are downweighted even more. The parameter β tunes
the “sharpness” of the weighting function.

5. steps 2-5 above are repeated until the solution converges (or the iter-
ation limit is reached).

6. Finally, the error for the estimated parameters is calculated. In the
no-colors situation, the error for the zeropoint is calculated as follows:

2the framework for color coefficient fitting is in place, but the actual fitting is not
implemented yet

23

ε2zp =
∑

ρ2
i Wi∑
Wi

fwhile the mean error of unit weight is:

me12 =
∑

ρ2
i Wi

N − 1

where N is the number of standard stars. The mean error of unit
weight is 1 in the ideal case (when all the errors are estimated cor-
rectly). A significantly larger value should raise doubts about the
error estimates.

8.5 Reporting

An example report is shown below.

(observation
(object "rs-lyr" ra "19:13:01.88" dec "33:24:46.13"

equinox 2000 jdate 2452760.45870622
telescope "30cm SCT FLEN=2000.0" aperture 30.0
exptime 20.00 sns_temp 238.0 filter "v"
)

noise (read 7.3 eladu 2.0 flat 0.0 scint 0.003)
ap_par (r1 3 r2 9 r3 13 sky_method "median" sigmas 3.0)
stars (
(name "GSC2657-0144" type std

smags "v(aavso)=12.300 p(gsc)=11.750" imags "v=-9.958/0.010"
residual 0.066 weight 384.712
flags (centered undef_err)
noise (sky 0.001 read 0.004 photon 0.008 scint 0.003))

(name "GSC2657-0268" type std
smags "v(aavso)=13.000 p(gsc)=12.710" imags "v=-9.149/0.016"
residual -0.043 weight 362.665
flags (centered undef_err)
noise (sky 0.003 read 0.008 photon 0.012 scint 0.003))

(name "GSC2657-0835" type std
smags "v(aavso)=9.200 p(gsc)=9.010" imags "v=-12.967/0.004"
residual -0.025 weight 397.903
flags (centered undef_err)
noise (sky 0.000 read 0.000 photon 0.002 scint 0.003))

24

(name "RS-LYR" type var
comments "VMAG=(9.2 15.8) SPECTYPE=M5e VARTYPE=M VARID=1909+33"
smags "v(aavso)=13.684/0.054" imags "v=-8.508/0.025"
flags (centered)
noise (sky 0.005 read 0.015 photon 0.016 scint 0.003))

)
transform (zerop 22.192 zp_err 0.048 me1 1.14)

)

The report is in the form of an association list, i.e. a list of name-value pairs.
Some values can also be lists. Top-level list elements are:

observation a list of parameters that globally describe the observation.
They are taken straight from the FITS header of the frame being
reduced.

noise the noise parameters from the frame header.

ap par photometry process parameters used. These parameters are read
from the configuration file, and can be modified in the Options dialog.

stars a list of the stars that have been measured. The instrumental magni-
tudes, derived standard magnitudes are listed here. The error estimate
for the star is broken down in components (from the sky baground
estimation, from read noise, from photon shot noise and from scintil-
lation). The total error appears in the error field of the instrumental
magnitude. For standard stars, the residual and the weight used in
the fit are listed. A list of flags in included, which signal occurences
in the reduction process that can have an influence on results.

transform the parameters of the trasformation from instrumental to stan-
dard, as determined by the program.

9 Camera Control

10 Telescope Control

11 Observation Scripts

12 Command Line Options and Batch Processing

25

